Poclainâs MG02 wheel motor has multiple features that simplified integration with the Agrobot harvester. Its dual displacement allows two-speed operation, and its integral mounting framework with pivots simplifies incorporation of a steering cylinder. It also has an option for an integral brake.
Rathburn explained, “The plastic components do not require external lubricant; therefore there is no grease or extra attraction of dirt and debris to the delicate fruit. The plastic components are also unaffected by the dirt and dust that is unavoidable in agricultural applications.” Bravo said the price of engineered plastic components had a dramatic impact on the overall cost of the SW6010 harvester. He explained that he and his team had agreed that the cost of typical steel components would be far too expensive, and chose to work with plastics from the beginning of the project.
Agrobot’s automated harvester is the first of its kind. Until now, laborers had to spend hours in the field picking strawberries by hand. Now, with the SW6010 harvester, an operator steers the harvester tight along the rows of plants, but the delicate nature of the berries still requires they be packed by hand. Still, automated harvesters of this nature could significantly decrease the labor requirements for berry crop growers — a welcome change as labor shortages have affected strawberry growers in recent years. According to Bravo, there is no other harvester available like his.
Agrobot’s automated strawberry harvester is still in the final prototyping stages, but Bravo says his company is close to bringing them to the market, “hopefully in a year or two.”
Agrobot is headquartered in Huelva, Spain, with a U. S. facility in Oxnard, Calif. For more information, including videos showing the robotic strawberry harvester in action, visit www.agrobot.com. Refer to the online version of this article posted to our website to see a schematic of the hydrostatic transmission circuit and links to videos.