Take, for example, a hydraulic system that has sensors before and after a valve (see figure above). The system runs at 10 bar and has a flow rate of 3.6 lpm before the valve is suddenly closed, creating a pressure wave of 11.2 bar that moves through the system. This pressure wave will continue moving until its energy is completely dissipated.
Overall, there are two concerns with unprotected pressure sensors: the pressure surge and the possibility of cavitation. The primary concern is whether the pressure surge will exceed the sensor’s overpressure limits. But, pressures from cavitation can exceed the pressure surge and are more harmful to pressure sensors. Cavitation is created by a negative pressure transient lowering pressure than the fluid’s vapor pressure. This leads to vapor bubbles forming and collapsing. Collapsing vapor bubbles expose the sensor to excessive localized pressures.
Sensor B, in Fig. 1, is at risk of cavitation as it sees pressures below the fluid’s vapor pressure immediately after the valve closes.
To understand how pressure transients damage sensors, you must understand how the sensor works. Pressure sensors are designed for specific pressure ranges. The sensing element is commonly a strain gauge on a thin diaphragm. The diaphragm’s design is a compromise between its sensitivity and safety; it can elastically deform at its rated capacity and be accurate, but if the pressure transient is too high, it deforms plastically (permanently) or ruptures. Either way the sensor is destroyed.
Manufacturers test pressure sensors to set overload pressure ratings, and it is generally done quasi-statically as most pressure sensors are quasi-static measurement devices. But pressure transients are not static and can cause failure even at pressures below the overload pressure rating. To mitigate this issue, a snubber reduces the dynamic pressures a sensor experiences during pressure transients.
The Snubber
A pressure snubber is an ancillary component with a small profile that is attached to the pressure sensor. It limits the fluid’s rate of pressure change by restricting the fluid flow through a smaller fitting. As fluid flow is limited, the sudden pressure rise is delayed downstream as fluid needs time to pass through the restriction. This lets pressure spikes be filtered out, but quasi-static pressure changes will pass through.