Seals to the Rescue
Seals can be separated into four categories: hydraulic, wiper and static seals, along with wear rings.
Hydraulic seals primarily prevent leaks. They can also help limit internal contamination through Lubrication Management, an approach that uses specially engineered seals to regulate lubrication between primary and secondary seals. This reduces heat generation and minimizes wear, increasing the components’ service lives. Less heat also lets hydraulic fluid last longer and not degrade, while reduced wear lowers the amount of particulates generated from the seals and their counter surfaces.
Wiper seals feature an outer scraping lip designed to prevent ingress of contamination. They are placed facing the external environment on dynamic surfaces where they are exposed to a variety of debris—such as water, dust and mud—common in hydraulic applications.
Wipers must exert the right amount of scraping force to ensure contaminants stuck to external portions of a rod are dislodged on each stroke. In many cases, a bi-directional wiper is used for additional oil film control.
Poorly regulated oil films can appear to be leaks and may let debris stick to the rod. Ensuring the wiper is correctly specified avoids this and lowers the likelihood of contamination.
Wear rings are parts of most hydraulic sealing configurations. They absorb transverse forces and prevent metal-to-metal contact, a common source of internal contamination.
Misaligned parts rubbing together can create and release metal particles into a hydraulic system. These particles become caught in the hydraulic fluid and carried throughout the system, causing wear on components and clogging fluid passages. Proper wear ring arrangements based on expected loads can prevent this.
Static seals are used throughout hydraulic systems and are often the last line of defense against internal leaks and outside debris getting into the hydraulics. They are typically located near threaded components. Therefore, it’s critical to avoid damaging them during installation. In higher pressure applications, hardware can sometimes balloon, increasing the space between metal components. In these situations, it’s important to specify the proper squeeze to ensure the seal retains enough sealing force to function.