At a Glance:
- Know the basics of open- and closed-circuit filtration designs.
- Factors to consider when specifying a return line filter system.
Selecting the appropriate filtration system when designing a hydraulic circuit is critical for maintaining fluid cleanliness and preventing premature wear, both of which contribute to optimal system operation and service life.
Contamination of the hydraulic system can occur during assembly and during operation. Contamination can come in many forms, including water or other fluids, air, solid particles, or corrosive agents and heat.
Dirt is the greatest enemy of hydraulic systems, since it generates wear that results in shortened service life of components. The cleaner the system, the higher its service life expectancy. Therefore, it is imperative that only clean fluid enter the circuit. In addition, a filter capable of maintaining fluid cleanliness to ISO 4406 class 22/18/13 or better, under normal operating circumstances, is recommended.
Between open- and closed-circuit filtration designs, there are additional factors to consider as well.
Closed-Circuit Designs
A closed-circuit filtration design will typically follow into either suction line filtration or charge pressure filtration (both partial- and full-flow).
In suction line filtration, a filter is placed in the circuit between the fluid reservoir and the inlet to the closed-circuit pump. Follow the manufacturer’s recommendations for bypass versus non-bypass filter in the suction line. A vacuum gauge can be used to show when the inlet pressure exceeds the manufacturer’s requirements. A contamination monitor will indicate when a filter change is needed, once a maximum vacuum level is reached.