All of us have probably used the equation that relates the output flow of a pump to its displacement (volume per revolution) and the input shaft speed (rpm):
Q = (D × N) ÷ 60
and that calculates the input torque to a pump when operating at a certain output pressure:
T= (P × D) ÷ 2π.
These two ubiquitous relationships provide first estimates of pump or motor performance without having to labor tediously.
We might ask, for example, “How much flow can we expect from a pump with 3.3 in.3/rev of displacement when operating at 2400 rpm?” We do the calculation, get 132 in.3/sec (approximately 34.2 gpm), and adjust the final flow to about 85 or 90% of that value to allow for some volumetrelric inefficiency. So in a matter of seconds, we have a reasonable estimate of the expected pump output flow in some application. We can do a similar calculation with the torque equation, except we increase the torque value to account for mechanical and frictional losses in the power conversion process.
A simple model
The two equations taken together are a mathematical model of a positive- displacement hydraulic machine, and they work equally well for either a pump or a motor. It is commonly stated that the formulas produce “theoretical” values for flow and torque. I prefer a more descriptive word, “ideal.” That is, the formulas apply to a pump or motor which has no losses; it is 100% efficient in both volumetric and in mechanical respects.
Any practical machine, of course, has losses, and the model of the ideal machine produces erroneous values. But that does not render the model useless if our aim is merely a first estimate and if we apply some correction factors to account for the losses.
If we all use these equations — adjusting and tweaking their results with correction factors as our personal experiences and consciences might dictate — under whose authority have we accepted them in the first place? Never mind that we could derive them by applying the first principles of physics to the pumping mechanisms. It seems that knowledgeable experts in the field of fluid power technology should be passing judgment on these formulas to give them credence. In the process, they would give the limitations as to their credibility, suitability, and utility as predictors of pump and motor performance.