Even if its engines fail, a modern aircraft can glide for very long distances if they start from a high enough altitude, but power for flight controls is needed for the crew to have an opportunity to land the plane safely. Ram air turbine (RAT) systems built by Hamilton Sundstrand in Rockford, Ill. can provide this emergency power in the unlikely event of a complete engine, hydraulic, or electrical failure. Hamilton Sundstrand supplies hydraulic RATs, electric RATs, and hybrid RATs (which combine an electric generator and pump). RATs are standard parts of the redundancy backup systems on modern-day business, regional, and large commercial jets, as well as military aircraft.
Ready when needed
Tom Gillis, director of engineering, Hamilton Sundstrand Electric Systems, explains that the RAT package consists of a turbine that is deployed into the external air stream by a spring-loaded actuator during an emergency situation. The turbine then powers a pump to pressurize the plane’s central hydraulic channel or a generator to power the essential electrical bus (or both in the case of a hybrid RAT). By judiciously selecting only essential hydraulic and/or electric functions, a crew can use the RAT output to maneuver a plane like a glider and land safely. In fact, there have been about 15 documented cases in which Hamilton Sundstrand RATs have been used and saved almost 2000 lives.
During normal flight, the turbine package is stowed away behind closed panels on the fuselage or (depending on the application) in the flap-trap fairing on an aircraft’s wing. In the case of a hydraulic RAT, if the aircraft’s hydraulic pressure drops, a release signal is sent automatically to the RAT uplock that holds it in its stowed position. (The crew also can deploy the RAT manually.) Once the uplock is released, a spring-loaded actuator deploys the RAT into the airstream, pushing the door open before it. Then, the air flowing past the aircraft drives the turbine blades, which power the pump.