This Bluetooth-certified wireless pressure transducer developed by Transducers Direct is intended for a wide variety of pressure-monitoring applications, including hydraulic systems rated to 10,000 psi. It connects to smartphones, tablets, and PCs with BLE (Bluetooth low energy) and provides long battery life via proprietary technology. Standard full-scale accuracy is ±1%, with ±0.25% optional.
Kevin Ashton, cofounder and executive director of the Auto-ID Center at MIT, probably explains the potential of the Internet of Things best: “Today computers—and, therefore, the Internet—are almost wholly dependent on human beings for information. Nearly all the data available on the Internet were first captured and created by human beings who were typing, pressing a record button, taking a digital picture, or scanning a bar code.
“The problem is, people have limited time, attention, and accuracy—all of which means they are not very good at capturing data about things in the real world. If we had computers that knew everything there was to know about things—using data they gathered without any help from us—we would be able to track and count everything and greatly reduce waste, loss, and cost. We would know when things needed replacing, repairing, or recalling, and whether they were fresh or past their best.”
Where Does that Leave Us?
Whether you work with pneumatics, industrial hydraulics, mobile hydraulics, or all three, products have already entered the marketplace that communicate through wireless networks for data acquisition, machine monitoring and control, and diagnostics. However, IoT applications don’t necessarily require that every device in a fluid-power system be able to communicate over wireless networks.
Machines on the factory floor have already been in place that provide two-way communication and control through fieldbus networks. For mobile equipment, this could take the form of coordinated control between multiple machines on a construction site, with individual machine control provided through GPS guidance.
In either case, each machine’s decentralized controls provide monitoring and control of individual components, and the fieldbus coordinates control and operation with other machines and production schemes to optimize operation and efficiency. Therefore, machines with these decentralized controls can be retrofitted as needed.