High-pressure aerospace hydraulic systems power everything from an aircraft's landing gear, flight controls, fuel systems and brakes. These intricate systems work harmoniously to ensure the aircraft's safe and efficient operation. Yet, they can't function optimally without a component that's often overlooked but undeniably crucial – the backup ring.
Despite their size, they play a critical role in ensuring the reliability and performance of high-pressure aerospace hydraulic systems. Backup rings help to ensure the integrity of seals used within these pressurized systems which leads to reduced leakage and a longer lifespan for components.
Understanding what backup rings do, the types available and their role in high-pressure hydraulic systems ensures systems developed for aerospace applications will be optimized to the requirements of the given application.
READ MORE: The Vital Role of Hydraulic Systems in Aircraft
What are Backup Rings?
A backup ring is a rigid ring typically made from thermoplastic material like virgin or filled PTFE (polytetrafluoroethylene), or high-performance thermoplastic such as PEEK (Polyether ether ketone). These rings are designed to close off the sealing system's extrusion gap and support the primary seal, especially under high-pressure conditions.
They are typically used in conjunction with O-rings, where they prevent extrusion — the phenomenon where a seal deforms under high pressure and moves into the clearance gap, leading to seal damage and system failure. The backup ring adds support and durability, ensuring the seal remains in its intended shape and place.
There are mainly three types of backup rings: Continuous (also known as uncut or solid), Single Turn (also known as scarf-cut or cut), and Spiral.