Distribution of ball spool wear of ball-in-slot versus ball-in-hole design. Brazing provides greater reliability
Brazing is a specialized soldering process that joins the carbide ball and stainless steel wire at temperatures above 450 oF (232 oC). It involves heating a filler metal above melting point and distributing it between two or more close-fitting parts via capillary action to join the pieces together. This critical manufacturing process is only possible with carbide — not sapphire — and is critical in enabling the ball to withstand both high temperatures and deterioration from chemicals in the hydraulic fluids.
Engineers often use epoxy as a brazing alternative when joining the feedback mechanism ball and wire. This is commonly used when joining sapphire to a stainless steel wire, since sapphire cannot be brazed. Unfortunately, servo valve applications present other factors that cause unexpected failure for epoxy/sapphire techniques. In fact, tests show that the epoxy used to join the feedback mechanism ball and wire in sapphire ball-based mechanisms can break down even within normal operating temperatures between 0 oF (-17.7 o C) to 160 o F (71 o C).
Ensuring a long and reliable life
The selection of carbide material for the ball on the feedback mechanism, the incorporation of ball-in-hole spool design and the integration of brazing to bond the carbide ball to wire are essential for ensuring a servo valve has a long and reliable life.
As design engineers consider the components for machines, they should give servo valve construction a closer look. The latest testing shows that carbide is as durable as sapphire. Research also indicates manufacturers can bond carbide to the feedback mechanism wire with a brazing process. Brazing enables the component to withstand hydraulic fluids and high temperatures, of course. And the ball-in-hole design extends the life of the servo valve by eliminating wear in the spool. Examining the details of servo valve design and making an educated choice can maximize uptime for your application and revenue for your business. It’s the sort of feedback an engineer needs to pick a longer-lasting servo valve.
Click here to visit Moog's website for more details on its carbide ball construction.
Daniel Baran is Engineering Service Manager for the Mechanical Feedback Servo Valve Department at Moog Industrial Group., East Aurora, NY. For more information, call (716) 652 2000 or visit www.moog.com.