Image

Determine the Cost of Compressed Air for Your Plant

Oct. 15, 2015
These equations can help determine the cost of compressed air, one of the most expensive sources of energy in a plant.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Most industrial facilities need some form of compressed air, whether for running a simple air tool or for more complicated tasks such as operation of pneumatic controls. A survey by the U.S. Department of Energy (DOE) showed that for a typical industrial facility, approximately 10% of the electricity consumed is for generating compressed air.

For some facilities, compressed-air generation may account for 30% or more of the electricity consumed. Compressed air is an on-site generated utility. Very often the cost of generation is not known; however, some companies use a value of 30 cents to 50 cents per 1,000 cubic feet of air.

Typical lifetime compressed air costs in perspective.

Compressed air is one of the most expensive sources of energy in a plant. The overall efficiency of a typical compressed air system can be as low as 10% to 15%. For example, to operate a 1-hp air motor at 100 psig, approximately 7 to 8 hp of electrical power is supplied to the air compressor.

To calculate the cost of compressed air in your facility, use the following formula:

where hpb = compressor shaft horsepower (frequently higher than the motor nameplate horsepower—check equipment specification),

Percent time = percentage of time running at this operating level,

Percent full-load hpb = hpb as percentage of full-load hpb at this operating level, and

Motor efficiency = Efficiency of the electric motor at this operating level.

Example

A typical manufacturing facility has a 200 hp compressor (which requires 215 hpb) that operates for 6,800 hr annually. It is fully loaded 85% of the time (motor efficiency is 95%) and unloaded the rest of the time (25% full-load hpb and motor efficiency is 90%). The aggregate electric rate is $0.10/kWhr.

Cost when fully loaded:

Cost when partially loaded:

Annual energy cost = $97,584 + $4,544 = $102,128

For additional information on industrial energy efficiency measures, visit www.energy.gov/eere/amo/compressed-air-systems.

Continue Reading

Handbook Simplifies Advanced Aspects of Mobile Hydraulic Controls

May 10, 2017
Author Brendan Casey lays out his hydraulics know-how that he acquired over 27 years in a simple handbook made for people that want to improve their skills in troubleshooting ...

The Impacts of Electrification on Fluid Power Systems

May 15, 2023
Electrification presents challenges as well as opportunities to re-evaluate and improve upon the design of hydraulics and pneumatics.

Sponsored Recommendations

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Circuit Protection Devices & Busbars

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...

All-In-One DC-UPS Power Solutions

March 13, 2024
Introducing the All-In-One DC-UPS, a versatile solution combining multiple functionalities in a single device. Serving as a power supply, battery charger, battery care module,...

Motor Disconnect Switches

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...