1. Here is a cutaway view of airflow through a compressed-air point-of-use filter.
Filters are rated according to the minimum particle size that their elements will trap. Although filters rated at 40 to 60 µm are adequate for protecting most industrial applications, many point-of-use filters are rated at 5 µm. Finer ratings increase the pressure drop through the filter, which equates to higher energy cost to compress the air. In addition, finer filters clog more rapidly, also increasing pressure drop. Therefore, using a filter finer than necessary does no harm to downstream components, but increases air system operating cost.
Many filter manufacturers will define the expected pressure loss and dirt-holding capacity, using curves related to pressure and flow. Therefore, particle-removal filters should be selected based on acceptable pressure drop and pipe-connection size. A typical pressure drop through such filters would be between 1 and 5 psig. A filter with larger body size will produce less initial pressure loss and provide longer operating life than a smaller-size filter with the same removal ratings.
Most point-of-use filters claim to remove condensed water, typically via a form of cyclone separator at their inlet end (Fig. 1). The water-removal efficiency of such filters is highly dependent on the incoming air velocity. Therefore, these filters must be matched to the intended airflow, rather than acceptable pressure drop. If the filter is intended to remove moisture, an integral automatic float-type drain should be provided to periodically remove accumulated liquids from the filter bowl.
Generally, such filters have transparent polycarbonate bowls, which allow easy visual inspection of the sump level. Numerous chemicals can attack this plastic material and it only performs well at pressures below 150 psig and temperatures between 40° F and 120° F. A metal bowl may be required when the filter could be subjected to conditions outside those limits, as well as when synthetic compressor lubricants, which often contain chemicals that are harmful to polycarbonate, are present.
Moisture Barriers
Most oil entrained in a compressed air stream, as well as some of the condensed water, will be in the form of mists or aerosols that can pass through the openings in standard airline filters. Air for instruments, spray painting, and bulk-material conveying frequently requires the removal of such droplets. Coalescing-type filters will accomplish this job (Fig. 2). Aerosol carryover through such filters is commonly stated as parts per million (ppm) of oil vs. air by weight and will range from 1 to as little as 0.01 ppm.