Miter gates shown in closed position with the water out of the chamber. The size of the gates provides a perspective for the load on the cylinders.
Previously, the control sequence used handles for each lock station. This required an operator to reach and manually turn handles until the lock was at the appropriate position. Now, with the hydraulic upgrade, the operator controls the lock from one station, eliminating the need to manually turn the control handles. As a result, less manpower is required in the control room. Operators can also monitor performance, allowing for maximum operating efficiency and streamlining data acquisition for preventive maintenance.
"The hydraulic technology has generally reduced the maintenance requirements, spare parts inventory, and operations downtime," said Carlos G. Patterson, Panama Canal project engineer program coordinator for the Locks Division. "It has also increased the level of technical knowledge among engineers and technicians."
Today, canal personnel can schedule maintenance, such as changing filter elements, during a regularly planned outage. This was not the case with the earlier, mechanical system. Furthermore, the hydraulic cylinders require virtually no regular maintenance.
To date, all 80 of the Panama Canal's miter gates are working well. Patterson adds, "Since the conversion to hydraulic technology, the canal has consistently improved its throughput. Although this is a result of a combination of several changes or improvements, the hydraulics technology has been an important contribution."
The Authority is currently working to upgrade vehicular gates by converting the old mechanical drives to hydraulic drives similar to those for the miter gates.
Janine Krempa is an applications engineer and Louis Prieto is a systems engineer with Bosch Rexroth's Hydraulics Div., Lehigh Valley, Pa. Email them at Janine.krempa@ boschrexroth-us.com or louis. [email protected]