Hydraulicspneumatics Com Sites Hydraulicspneumatics com Files Uploads Custom Inline Archive Www hydraulicspneumatics com Content Site200 Articles 12 01 2002 21514 Figure02jp 00000011540

Shock treatment saves equipment

June 26, 2006
Both mechanical and fluidborne shock and vibration can be very detrimental to equipment's performance and service life. Plan ahead to avoid or control them.

As load strokes shock absorber, piston blocks successive orifices into pressure chamber.

Virtually all machinery — whether it's industrial or mobile equipment — generates movement of some kind. The movement can be linear or rotary. At some point, these motions either change direction or come to a stop. Any moving object possesses kinetic energy as a result of its motion. When the object changes direction or is brought to rest, the dissipation of its kinetic energy can result in destructive shock forces within the structural and dynamic parts of the machinery.

Because kinetic energy is the product of mass and the square of velocity, the heavier an object is — or the faster it travels — the more energy it has and the greater the deceleration force that will develop as it stops. If kinetic energy can undergo controlled, smooth absorption and dissipation, equipment can:

  • cost less to build,
  • run faster,
  • last longer,
  • operate more efficiently, and
  • require less maintenance.

In addition, noise pollution and energy costs will be reduced.

Older methods of mechanical-energy absorption include rubber bumpers, springs, hydraulic dashpots, and cylinder cushions. All of these are limited because they are non-linear and exhibit a high peak force at some point during their strokes. They cannot produce smooth deceleration.

Designed to control shock
Rubber bumpers and springs slow down moving loads by applying constantly rising reaction forces — up to the point of full compression. The peak stopping force occurs at the end of the stroke. These devices store energy, rather than dissipate it, which causes the load to bounce back after stopping.

Cylinder cushions and dashpots incorporate a metering orifice that abruptly slows the moving load at the start of their stroke — where the peak force and high shock load appear. The braking force then falls away rapidly.

Modern industrial shock absorbers improve on all these devices. They combine the proven strength of the hydraulic-cylinder configuration with a series of orifices that produce a constant resisting force throughout the shock absorber's stroke. This brings the moving load smoothly and gently to a stop. The load is decelerated with the lowest possible force in the shortest possible time, reducing peak force and shock damage.

Shock absorber construction
In its most general form, a shock absorber consists of a doublewalled cylinder with an inner pressure-chamber bore and a second chamber between the concentric inner and outer walls. It also has a piston, some mechanical means for returning the piston after the load is removed, and typically a mounting plate. The piston return usually is a spring, which can be mounted externally around the piston rod or on the inside of the cylinder body.

A series of orifices is drilled through the inner cylinder wall at exponential intervals. The reason for the exponential spacing is derived from the equation for kinetic energy:

KE =1/2Wv2,

where: KE is kinetic energy, W is the moving weight, and v is the impact-velocity.

All air must be bled from the fluid because air bubbles cut the efficiency of shock absorbers by causing spongy or erratic action. When a moving load contacts the piston rod, it drives the piston inward, forcing fluid through the orifices and into the outer pressure chamber. As the piston moves, it progressively blocks the orifices behind it. This reduces the effective metering area and maintains a uniform deceleration force while the load's energy is converted to heat in the fluid. This heat eventually dissipates to the ambient atmosphere.

Continue Reading

Handbook Simplifies Advanced Aspects of Mobile Hydraulic Controls

May 10, 2017
Author Brendan Casey lays out his hydraulics know-how that he acquired over 27 years in a simple handbook made for people that want to improve their skills in troubleshooting ...

Terrain Leveler is All Hydraulic

Feb. 22, 2017
Hydraulics helps surface excavation machine extract ore reserves that might otherwise get left behind.

Sponsored Recommendations

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

Circuit Protection Devices & Busbars

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...

All-In-One DC-UPS Power Solutions

March 13, 2024
Introducing the All-In-One DC-UPS, a versatile solution combining multiple functionalities in a single device. Serving as a power supply, battery charger, battery care module,...

Motor Disconnect Switches

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...