Figure 1. A typical profile using creep plateau is illustrated above. The disadvantage of using a creep plateau in PLC motion control is that it either extends the cycle time or it requires a higher maximum speed, VSS, for the system to maintain the total machine cycle distance. A higher VSS necessitates higher acceleration and deceleration rates, which may induce cavitation in the actuator. Higher maximum speed also requires a larger control valve or higher supply pressure.
Steeper slopes are also rich in high-frequency components, which can induce springiness from hydromechanical resonance, giving an undesirable bounce at the end of the cycle. Nonetheless, if the alternative is unacceptable positioning error, using a creep speed plateau, Figure 1, is usually the positioning strategy of choice in the bang-bang control systems under discussion.
In practice, T1 is usually known; however, other times it must be tuned at commissioning time based upon a perceived optimal performance. That optimal performance is a compromise between cycle time and final positioning ability. If random factors affect the T1 decision point when the system is finally tuned, then the tuner will always readjust the system to create the longest possible creep time from T3 to T4. This is because when the PLC sample time occurs immediately following the acquisition of the ideal deceleration timing point, and if T2 is timed to minimize the creep time, then the PLC sample surely will occur immediately before the ideal deceleration timing point during a subsequent cycle. Ultimately, the target will be overshot by an amount equal to the product of the sample interval and the slew (highest attainable) speed.
Of course, if the deceleration timing point is one interval late, then the creep speed time interval must be commensurately reduced to attain the final position. That, after all, is the purpose of the control system. For now, let’s evaluate the idealized profile of Figure 1.
Examining an example
If the system designer can make a reasonable estimate of the several times in Figure 1, and if there is a final positioning target, then the slew speed can be found to achieve all times and the final stopping position from Equation 1. Note that xTis the final, or target position, and the creep speed is the maximum speed, Vs, divided by the slowdown ratio, D. Now, because there is a Vs (Figure 2) in every term of Equation 1, then the slew speed can be found using Equation 2.