Figure 2. As system pressure increases from (A) to (B), an O-ring seal is progressively forced into an extrusion gap. Once the material has flowed into the gap, (C), permanent damage has occurred.
Almost all of the design and in-service technology of high-pressure sealing deals with protecting the elastomeric seal from the potentially destructive distortion caused by high system pressures. With proper backup to reduce the size of the gap, relatively fragile elastomers can successfully seal extremely high pressures.
When handling a 90-durometer energized urethane lip seal or U-cup at room temperature, the seal seems to be made of an extraordinarily stiff, tenacious material. It requires well-designed experiments and/or sophisticated computer simulations to visualize the state of such a seal inside a hydraulic cylinder at normal operating temperatures and pressures. At pressures as low as 600 psi for 70-durometer nitrile rubber and 1,500 psi for 90-durometer urethane, the seal cross section is significantly deformed. It changes shape almost instantaneously in response to pressure spikes or changes in the size of the clearance gap.
Material is the key
The key to high-pressure sealing is the use of a material or a combination of materials that has sufficient tear strength, hardness, and modulus to prevent extrusion through the gap. At pressures of 5,000 to 7,000 psi, the strongest elastomeric materials in standard seal configurations resist the extrusion without reinforcement. At higher pressures, the elastomeric sealing element must be backed by a higher modulus and harder material. Various more-or-less standard backup configurations have demonstrated their effectiveness over many years.
At pressures in excess of 20,000 psi, the extrusion gap must be closed and the elastomeric seal must be protected by a sequence of progressively harder, higher-modulus materials. Properly designed, this progression of materials prevents extrusion, tearing, cutting, or other destructive deformation of the elastomeric seal and distributes loads more uniformly to the element that bridges the gap.
Recent developments
In Europe and the United States, as the move to more environmentally friendly fluids grows, many types of vegetable-based and synthetic oils have been developed. Each has its own set of characteristics — many of which can affect sealing effectiveness seal material compatibility.
The seal industry has kept up with the technology by introducing new materials and blends to accommodate chemical and physical properties of these new fluids while still providing the sealing integrity users expect.
Material for this article was excerpted from the Fluid Power Handbook & Directory, which can be accessed from our home page by clicking on the Fluid Power Basics button.